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ABSTRACT

The design of supermaneuverable fighter aircraft, high-precision space-born optical

tracking systems and -transatmospheric hypervelocity vehicles will pose significant challenges

to modern control system design theory. The theme of the research has been "making modern

control theocy work." The product of the research has been theory, algorithms and software

applicable to multivariable feedback control problems in which there are design constraints

requiring robust attainment of stability and control performance objectives in the face of both

structured and unstructured uncertainty.
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INTRODUCTION: THE Pn1OBLEM

The underlying problem in robust feedback control system synthesis is to find a feedback

controller C(s) such that a given vector, say col (e,u,y), whose components comprise the

control system's error, control and plant output signals, respectively, remains in a specified set

despite uncertain disturbances, parameters, gains, phases and nonlinearities within a given set,

say D. The performance specifications on the signals e, u, and y may be expressed in terms of

frequency response inequalities (for broadband r.m.s. disturbance rejection), closed-loop pu;e

locations (for acceptable transient response to impulsive and step disturbances), closed-loop

zero locations (for asymptotic tracking and asymptotic rejection of disturbances with known

poles).

It turns out that this general problem can be reformulated as a consequence a certain

lemma of Youla as the problem of finding the set, say K, of all transfer function matrices X(s)

having "stable" poles (i.e., poles in a stipulated region) for which the excess stability margin

km satisfies

km(A + BXC; D >1 (1)

(see [22,231 and the references therein). Here the A(s), B(s), and C(s) are transfer function

matrices which depend on the specific plant and on where the uncertain noises, parameters, etc.,

enter. The function km(T;D) is defined for any transfer function matrix T(s) and any set D2 of

uncertain operators as [40]

km(T;D) = inf {k: k real, (I + kDT) "1 is "unstable" for some D in the set D ; (2)

the quantity 1/km has been called the structured singular value .(T) by Doyle [26]. Thus,

km(T;D.) is the gain margin (for the worst-case D in the set D) of a hypothetical feedback

... . nmn n n nnu nmrm nu mmnun m =nu nuum,.mu uto u mn mm n1



system having loop transfer function T. The quantity km(T,D) is defined to be zero when T is

open loop unstable. The notion of "unstable" is left intentionally vague here, since the

appropriate definition of stability may vary depending on the application. For example, it may

refer to stability with a specified degree, e.g., with all poles in some specified set [58]. A

"stable" function X(s) (that is, a stabilizing compensator C(s)) verifying (1) achieves the

ultimate design objective, but one may also look at cptimizing the performance as

km o = max km(A + BXC;D).

X "stable" (3)

Currently, the function km(. ; . ) can be computed only in special cases such as when the

set ]a is finite or when 2 is the set of all transfer function matrices whose largest singular value

is bounded for all frequency by a given number, i.e., when IJDII. is bounded, in which case the

problem (3) reduces to the multivariable Loo optimization problem [22,23]

km°Pt := min A + BXC I11,
X "stable" (4)

The problem of developing a useful characterization of the set X of transfer function matrices

X(s) satisfying (1) likewise can only be solved in special cases, e.g., D singular-value bounded

or D. real, scalar gains. Also unsolved, and not less difficult, is the problem of optimizing the

km-performance as described by (3). Our research over the past two and one-half years has

addressed these unsolved problems, building upon and extending the theoretical base of L'

optimal control theory. We have made significant strides toward our goal of creating a cohesive

body of theory that may be used by engineers to solve the broadest possible class of practical

robust multivariable feedback control design problems.
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SUMMARY OF PROGRESS PREVIOUSLY REPORTED

Since research under AFOSR Grant 85-0256 began two and one-half years ago in July

1985, progress has been made on several aspects of this problem, leading to a substantial

number of AFCSR-supported reports and publications (1-20, 24, 28-31, 34, 56-61]. Among

the new results is a vastly improved "Toeplitz + Hankel" aigorithm for computing the minimal

cost for L0 optimal control problems (3,5,14,16,17]; the results promise to reduce

computer-time for L00 control calculatios by a factor of 10. Another result [18] involves a

vector-valued alternative to the standard L°o control problem which has been bound to enable a

more precise trade-off between sensitivity S(s) and complementary sensitivity I-S(s). In

[4,5] we describe how the frequency-weighted LQG (Linear Quadratic Gaussian) synthesis

theory (Safonov et al. [25]) was used to design a robust multivariable controller for a 40-state

model of a flexible mechanical truss structure; the control design worked well when digitally

implemented and connected to the infinite-order real system. In [2] a homotopy method for

eliminating conservativeness in I.(T;D) stability margin calculation was developed and

evaluated, but found to be too computationally demanding to be practical. Further study resulted

in a significant breakthrough in nonconservative p.(T;D) calculation techniques in [1,7,191;

these new results make computation of g(T;D) practical for the first time for the important

case when the set D is a cube in In (i.e., the case of several uncorrelated unknown-but-bounded

uncertain real parameters); this problem has become popularly known as the "real km" or

"real I±" problem. A major practical advance in 1986 was the development at USC of a software

package [8] within the CTRLCTM/PC-MATLABTM framework for solving a broad class of L'

optimal control problems. Over the past year, in further work not supported by AFOSR, we have

collaborated with the publishers of PC-MATLAB to create a new PC-MATLAB Robust-Control
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Toolbox, software package and user's guide [65]. Our toolbox makes the L" optimal control

theory and associated Hankel and balanced model reduction theory widely accessible to practicing

engineers.

The process of developing and testing this software enabled us to identify and resolve a

number of minor, but critical, shortcomings of the existent L°° conceptual algorithms; the

initial versions of the refined L' theory and algorithms were summarized in [15]. An early

version of our Robust-Control Toolbox called LINF was used for a "benchmark" multivariable

aircraft controller design problem in [9] and for a flexible space structure controller design in

[651. In a separate development, we developed a significantly improved computer-oriented

criterion for nonlinear stability which may render the celebrated Popov criterion obsolete; our

new nonlinear stability criterion is superior (i.e., less conservative than) the standard

graphical criteria including the circle criterion, the off-axis circle criterion, and the Popov

criterion. Another major breakthrough has been the solution of the diagonally-scaled L00

optimal control problem for a limited but nontrivial class of problems [10,12,30]; this new

theory enables achievement of our ultimate design objective, namely the solution of (3) for a

limited class of problems involving complex structured uncertainty.

PROGRESS THIS YEAR

Since July 15, 1987 we have made several major advances in the area of H' optimal

control theory, in algorithms for model order reduction and in the mathematical system theory.

We regard the first two of the following to be major practical advances, and the third has been a

major theoretical advance:

1. Two-Riccati Hoc Formulae [36, 56, 60]

2. Basis-Free Model-Reduction Formulae [24, 28, 57]

4



3. Spectral Theory of LO and H00 Problems [59-61]

4. H' Control Over Arbitrary Regions of the Complex Plane [58]

Two-Riccati H' controller formula, developed largely independently by Doyle et al. [38,

39, 63, 64] and by Limebeer, Kasenally and Safonov [56, 62] and closely related to the formula

of Juang and Jonckheere [35, 36], constitute what may be the single greatest breakthrough in

control theory in tne past decade. These formula enable one to completely bypass the You'a

parameterization A + BXC and solve the multivariable L " optimization problem 4 by solving

two Riccati equations of the state-space (A, B, C, D) matrices of the plant. The result is the

two-Riccati formula for "order n" H controllers which are no more complicated to compute or

implement than H2 controllers (i.e., LOG controllers). We have coded these formula using

PC-MATLAB and found them to be superior for computer implementation of H00 optimal control

theory, producing H controller solutions reliably for plants with dozens of states in only a few

minutes of computer time on a VAX 11/780 and on a SUN 3/50 workstation.

We pursue the "two-Riccati" breakthrough in the H theory further in [60,61]. In

[60], we develop an embedding technique involving "loop shifting" variable changes which

enable the general H optimal control problem to be reduced to the much simpler special case

intially treated by Doyle et al. [38, 39, 63]. The simplications made possible by our loop

shifting techniques made it practical, for the first time, to present complete derivations of the

H0 theory for the general case. In computer studies we have also observed that the

loop-shifting formula are easier to code and slightly faster to compute with than the two-Riccati

general formulae of Glover et al. [64] and Limebeer et al. [56].

The second major advance, our basis free model reduction formulae [24, 28, 57], has

made model order reduction with an infinity-norm error-criterion practical for those systems

which stand to benefit the most from model reduction, viz., systems with some modes which are

5



nearly ur itrollable or nearly unobservable. Though perhaps not particularly exciting from a

purely theoretical point of view, they are a major advance because they make Hankel Optimal

(HO) model reduction, Balanced Truncation (BT) model reduction and Balanced Stochastic

Truncation (BST) model reduction p-actical. A critical shortcoming of these three methods that

had gone unnoticed by theoreticians heretofore was that they simply did not work on systems

with uncontrollable or unobservable modes. The first step in all the literature in these

infinity-norm criterion model reduction methods involved finding a "balancing transformation,"

a transformation which generically fails to exist for non-minimal realizations. Theoreticians

failed to recognize the problem since, JLU h.., one can always eliminate non-minimal modes.

In practice, however, systems are generically observable and controllable, even if only barely

so, and, in practice, one of the primary uses of model reduction is to identify and discard the

barely observable/controllable modes. Moreover, a computer with finite numerical precision

cannot distinguish a barely observable mode from an unobservable one and, in any case, some

"barely observable" modes can turn out to have a very significant impact on the

frequency-response of a system. Thus, it is folly to suppose, as theoreticians had, that one can

usefully begin a model reduction procedure by discarding the unobservable and uncontrollable

modes. Our basis-free methods for modei reduction bypass the inherently ill-conditioned initial

balancing step. The resulting model reduction formula are simpler, faster to compute, and mcst

importantly they work. They work even for nonminimal and nearly nonminimal systems,

reliably eliminating the unobservable and uncontrollable modes while ensuring that the

important infinity-norm error bounds associated with Hankel, balanced truncation and balanced

stochastic truncation model reduction methods are satisfied.

The relative-error infinity-norm error bounds of BST makes our basis free BST

algorithm in [571 especially attractive for robust control system design. A "robustness
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tteorem" [571 establishes that a model is useful for designing feedback control systems only if

its relative error is less than one thoughout the control loop bandwidth as determined from

singular-value Bode plots of the loop transfer function matrix. This robustness theorem proved

vital in our TRW-supported large space-structure design study [651 in which a 4-state plant

model surprisingly was proved to be adequate for a structure having 116 modes within the

control loop bandwidth. This work is a spinoff of the so-called "phase matching" problem

initiated by Jonckheere; see, e.g., [481, [491 and references therein.

The "Toeplitz + Hankel" operator theoretic interpretation of the H=O theory has led to a

number of theoretical insights into the Hw optimal control problem which we hope will

eventually lead us to better and faster computational algorithms and, perhaps, to generalization

of the HOO control theory. Moving beyond our early work on fast Toeplitz + Hankel algorithms

(3,14,16,17,34,351, our recent work in [59,611 achieves, we feel, a complete understanding

of the links between the HO problem and the spectral theory of the linear-quadratic problem.

In a few words, this is the essence of the results in [59,61]:

Consider the standard 2-block frequency response inequality

HLCA)- QLA)

verified for some

Q e Hc'o£

where

(H(s) DH CH

The key idea is to map the frequency response inequality to the time domain using Parseval's like

7



arguments. This yields

10 (xT uT ] TE :0 u u dt, V u
>Oo (S T  R, u --00

where x is generated by the state space equation

= Rx + Bu

and

Q = -CTHCH

R = DTVDV

S = IYH + YV)BH uTVDV

where

A
T [YH + YV) + [YH + YV)R = -_C T HC H + CT v v

The cornerstone of the spectral theory of the linear quadratic problem -- proved ten years ago

by Jonckheere and Silverman -- is that

O [×T uT )  = ful, (T + H1IH2)u)

wr o ST R (
where T is Toeplitz and H is Hankel.

Using the LQ-H' mapping, all the results of the spectral theory of the linear quadratic

problem have an HOO interpretation, ant vice-versa. Consequently, this symbiotic LQ/H'

theory has allowed to provide simple linear-qudratic insight to such problems as (i) degree of

H compensator; (ii) pole/zero cancellation at H optimality; (iii) Riccati equation solution

to H"O design; (iv) -, -iteration, etc. The challenge before us, now that we understand these

8



relationships, will be to turn these operator-theoretic insights into practical algorithms. This

is one of the aims of our current work.

The most significant practical impact of this symbiotic LQ/H ' theory, which we were

first to introduce [31, is a better understanding of the termination condition on the a--iteration.

Indeed, in the 2-Riccati solution to the 4-block problem, the tolerance level "' is recursively

decreased until "something" breaks down in the Riccati construction of the compensator

achieving the tolerance -'. With this LQ/HOO theory at hand, we relate the breakdown of the

2-Riccati equation construction of the compensator to the spectral structure of several "Toeplitz

+ Hankel" operators. Depending on whether -, hits the continuous or discrete spectrum, the

Riccati solution either has closed loop poles on the jcw-axis or has the wrong sign. Finally, if

optimality is achieved at the discrete spectrum, an easy procedure for reducing the size of the

H' compensator emerges.

Finally, we briefly discuss the fourth area in which we have made significant progress

this past year: H' control over a planar domain [58]. This work, which builds upon the Pl's

earlier work in [21,67] provides s formula for solving "one-block" H' optimization

problems over a subset 0 of the complex plane specifiable in the form

0= (ZE -,Z )1

There are some technical conditions on the j's which are not expanded upon here. Work is sill

in progress on this problem, but the key feature of the results that have emerged thus far is that

the generalization from the usual left-ha!f plane C_ can be handled via a simple modification of

the controllability observability Lyapunov equations which determine the H optimum in

9



conventional HOO problems in which Q equals C-.
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